Symmetry and Point Group

Yue-Xin Huang

School of Sciences, Great Bay University

Aug. 29, 2025

Outline

Transformation and symmetry

Axial vector

Translation

Reflection

Rotation

Space and time reversal

Combine operation

Point group

What is group

32 crystallographic point group

Outline

Transformation and symmetry

Axial vector Translation

Reflection

Rotation

Space and time reversal

Combine operation

Point group

What is group

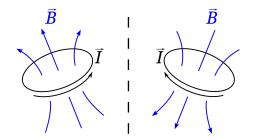
32 crystallographic point group

Define a vector as:

$$\mathbf{c} = \mathbf{a} \times \mathbf{b}$$

- a and b are polar vectors
- $\bullet \ \ \mathsf{Under \ inversion:} \ \mathbf{a} \to -\mathbf{a}, \ \mathbf{b} \to -\mathbf{b}$

$$\mathbf{c} \to \mathbf{c}$$



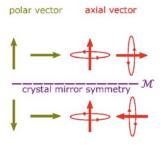
- $\bullet \ \ {\rm A \ loop \ of \ wire \ carries \ a \ current \ } I \to {\rm magnetic \ field} \ B$
- ullet Under a mirror plane: I
 ightarrow -I
- \bullet Physical example: angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$

Transformation rules:

polar vector : $\mathbf{v}' = R\mathbf{v}$

 $\mathsf{pseudovector}: \mathbf{v}' = \det(R) R \mathbf{v}$

 Physical examples of axial vector: magnetic field, angular momentum, angular velocity, torque



A axial vector $\mathbf{a} = (a_x, a_y, a_z)$

- Inversion: $\rightarrow \mathbf{a}$
- Reflection \mathcal{M}_x : $\rightarrow (a_x, -a_y, -a_z)$

A polar vector $\mathbf{a} = (a_x, a_y, a_z)$

- Inversion: $\rightarrow -\mathbf{a}$
- Reflection \mathcal{M}_x : $\to (-a_x, a_y, a_z)$

Space translation

$$\mathbf{r} \rightarrow \mathbf{r} + \mathbf{a},$$

Time translation

$$t \to t + \tau$$

$$\begin{split} \mathsf{L}_{\mathbf{a}} \Psi(\mathbf{r}) &= \Psi(\mathbf{r} - \mathbf{a}) \\ &= \left(1 - a_i \frac{\partial}{\partial r_i} + \frac{1}{2} a_i a_j \frac{\partial^2}{\partial r_i \partial r_j} \right) \Psi(\mathbf{r}) \\ &= \exp\left(- a_i \frac{\partial}{\partial r_i} \right) \Psi(\mathbf{r}) \\ &= \exp\left(- \frac{i}{\hbar} \mathbf{a} \cdot \hat{\mathbf{p}} \right) \Psi(\mathbf{r}) \end{split}$$

- The momentum operator $\hat{\mathbf{p}} = -i\hbar \nabla_{\mathbf{r}}$
- The space translation operator

$$\mathsf{L}_{\mathbf{a}} = \exp\left(-\frac{i}{\hbar}\mathbf{a}\cdot\hat{\mathbf{p}}\right)$$

This is a unitary operator

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}) = H\Psi(\mathbf{r})$$

• Act La on both sides

$$\begin{split} i\hbar \frac{\partial}{\partial t} \mathsf{L}_{a} \Psi(\mathbf{r}) &= \mathsf{L}_{a} H \Psi(\mathbf{r}) \\ &= \mathsf{L}_{a} H \mathsf{L}_{a}^{-1} \mathsf{L}_{a} \Psi(\mathbf{r}) \end{split}$$

• For a translation-invariant system, we have $[L_a, H] = 0$, thus

$$i\hbar \frac{\partial}{\partial t} \left[\mathsf{L}_{\mathsf{a}} \Psi(\mathbf{r}) \right] = H \left[\mathsf{L}_{\mathsf{a}} \Psi(\mathbf{r}) \right]$$

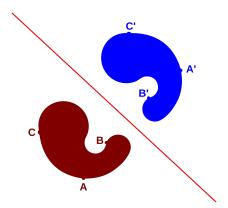
- $[L_a, H] = 0 \Longrightarrow [\hat{\mathbf{p}}, H] = 0$
- Momentum is a conserved quantity

Time translation symmetry

Time translation symmetry

 \rightarrow Prove energy is conserved

Mirror (reflection)



• In 3D, the
$$y$$
- z plane reflection: $\mathcal{M}_x = \begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \end{pmatrix} \to \det(\mathcal{M}_x) = -1$

For a polar vector

$$\mathbf{v} \to (-v_x, v_y, v_z)$$

Rotation

• The axis is a line of its fixed points

$$R_{\mathbf{r}}(\theta) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

- The matrix R is a memeber of $3\mathsf{D}$ special orthogonal group $SO(3) \to \det(R) = 1$
- In crystals, the ration angle $\theta = \frac{2\pi}{n}$

$$n=1,2,3,4,6$$

Rotation in crystallography

Assume

- a and \vec{b} are primitive vector of a 2D lattice
- $R(\theta)$ is rotation matrix

$$R(\theta)\mathbf{a} = m_{11}\mathbf{a} + m_{12}\mathbf{b}$$
$$R(\theta)\mathbf{b} = m_{21}\mathbf{a} + m_{22}\mathbf{b}$$

Write it with matrix form

$$\begin{pmatrix} \mathbf{a}' \\ \mathbf{b}' \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$$

- ullet Conclusion under primitive vector basis: If the rotation is a symmetry of a lattice, then all the elements of R are integers.
- The trace of any rotation matrix is invariant under any transform $\to \operatorname{tr}(R)$ is interger

Rotation in crystallography

For a vector $\mathbf{a} = (x, y)^T$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• $\operatorname{tr}(R) = 2\cos\theta$ with $\theta = 2\pi/n$

$$tr(R) = 2, \quad n = 1$$

 $tr(R) = -2, \quad n = 2$
 $tr(R) = -1, \quad n = 3$
 $tr(R) = 0, \quad n = 4$
 $tr(R) = 1, \quad n = 6$

- We only have C_1, C_2, C_3, C_4, C_6 in crystals
- In 3D, $tr(R) = 2\cos\theta + 1$

Inversion

$$\mathcal{P}\begin{pmatrix} x \\ y \\ z \end{pmatrix} \to \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}$$

• One fixed point: Inversion center

$$\det(\mathcal{P}) = -1$$

- Electric field: $\mathcal{P}\mathbf{E} = -\mathbf{E}$
- Magnetic field: PB = B

Time reversal

$$t \to -t, \quad x \to x, \quad p \to -p$$

• Imaginary number: $i \rightarrow -i$

$$[x, p] = i\hbar$$

 $\Longrightarrow \mathcal{T}[x, p]\mathcal{T}^{-1} = \mathcal{T}i\hbar\mathcal{T}^{-1}$

ullet ${\cal T}$ is an anti-unitary operator

$$T = UK$$

where ${\cal U}$ is a unitary operator, and ${\cal K}$ is complex conjugation

Anti-unitary properties

$$\mathcal{T}\psi = U\psi^*, \quad \langle \mathcal{T}\psi | \mathcal{T}\phi \rangle = (\langle \psi |)^* U^{\dagger} U(|\phi \rangle)^* = (\langle \psi | \phi \rangle)^* = \langle \phi | \psi \rangle$$

• In classical physics, we only have $\mathcal{T}^2=+1$

Time reversal in spin-1/2 particle

Spin angular momentum reverse signs under \mathcal{T} :

$$\mathcal{T}\sigma_x \mathcal{T}^{-1} = -\sigma_x, \quad \mathcal{T}\sigma_y \mathcal{T}^{-1} = -\sigma_y, \quad \mathcal{T}\sigma_z \mathcal{T}^{-1} = -\sigma_z$$

• The operator can be represented by: $\mathcal{T}=i\sigma_y\mathcal{K}$

$$\mathcal{T}^2 = i\sigma_y \mathcal{K} i\sigma_y \mathcal{K} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -1$$

Kramers degeneracy

For a time-reversal-invariant system, if $|\psi\rangle$ is an eigenstate of system, then $|\mathcal{T}\psi\rangle$ is also a eigenstate. For the case of $\mathcal{T}^2=-1$, one has

$$\langle \psi | \mathcal{T} \psi \rangle = \langle \mathcal{T}^2 \psi | \mathcal{T} \psi \rangle = - \langle \psi | \mathcal{T} \psi \rangle$$
$$\Longrightarrow \langle \psi | \mathcal{T} \psi \rangle = 0$$

• ψ and $\mathcal{T}\psi$ are distinct states \to Kramers doublet

$$\psi_{n,\mathbf{k},\sigma} = \psi_{n,-\mathbf{k},-\sigma}$$

• At k=0 or π , where k=-k, every single energy level is double degenerate

Improper rotaion

Also called rotation-reflection

Example polyhedra with rotoreflection symmetry

Example polyhedra with rotorenection symmetry					
Group	<i>S</i> ₄	S ₆	S ₈	<i>S</i> ₁₀	S ₁₂
Subgroups	C ₂	$C_3, S_2 = C_i$	C ₄ , C ₂	C_5 , $S_2 = C_i$	C_6, S_4, C_3, C_2
Example	beveled digonal antiprism	triangular	square antiprism	pentagonal antiprism	hexagonal antiprism

\mathcal{PT} symmetry

$$\begin{aligned} \mathcal{P}: \mathbf{r} \to -\mathbf{r}, & \mathbf{k} \to -\mathbf{k}, & t \to t \\ \mathcal{T}: \mathbf{r} \to \mathbf{r}, & \mathbf{k} \to -\mathbf{k}, & t \to -t \end{aligned}$$

For a Hamiltonian

$$\mathcal{PT}H(\mathbf{k})(\mathcal{PT})^{-1} = H(\mathbf{k})$$

• $(\mathcal{PT})^2 = -1$, every energy band is doubly degeneracy

Transformations of H

Transformations: discrete and continuous

- Discrete transformations
 - 1. Reflection in mirror
 - 2. Interchange of two identical particles
 - 3. Charge conjugation (particles ↔ anti-particles)
 - 4. Time reversal
- Continuous transformations
 - 1. Translation in time
 - 2. translation in space
 - 3. Rotation about an axis

$$|\psi'\rangle = \hat{U}(\alpha) |\psi\rangle$$

Unitary operator

The operator must be a unitary operator

$$\begin{split} \left\langle \psi' \middle| \psi' \right\rangle &= \left\langle \psi \middle| \psi \right\rangle = 1 \\ \to \left\langle \psi \middle| U^{\dagger}(\alpha) U(\alpha) \middle| \psi \right\rangle &= 1 \\ \to U^{\dagger}(\alpha) U(\alpha) &= 1 \end{split}$$

Infinitesimal transformations

The operation of $U(\alpha)$ is equivalent to operating with n times of $U(\alpha/n)=u(\varepsilon)$

$$U(\alpha) = \lim_{n \to \infty} [U(\alpha/n)]^n = \lim_{n \to \infty} [U(\varepsilon)]^n$$

Thus, one can have

$$U(\varepsilon) = 1 - \frac{i\varepsilon}{\hbar}G$$

- ullet G is a Hermitian operator
- ullet G is called the generator of the transformation \leftrightarrow physical observable

Infinitesimal transformations

The operation of $U(\alpha)$ is equivalent to operating with n times of $U(\alpha/n)=u(\varepsilon)$

$$U(\alpha) = \lim_{n \to \infty} [U(\alpha/n)]^n = \lim_{n \to \infty} [U(\varepsilon)]^n$$

Thus, one can have

$$U(\varepsilon) = 1 - \frac{i\varepsilon}{\hbar}G$$

Time translation operator

$$U_t(\varepsilon) = 1 - \frac{i\varepsilon}{\hbar}H$$

The generator is the Hamiltonian or energy operator, whose observable is what we identify classically as the energy of the system

Invariance, symmetry and conservation

• The physics is invariant under a transformation if

$$\langle \psi(t')|G|\psi(t')\rangle = \langle \psi(t)|G|\psi(t)\rangle$$

$$\Longrightarrow \langle \psi(t)|U_t^{\dagger}GU_t|\psi(t)\rangle = \langle \psi(t)|G|\psi(t)\rangle$$

$$\Longrightarrow U_t^{\dagger}GU_t = G$$

$$\Longrightarrow [U, U_t] = 0$$

The Hamiltonian is symmetric with respect to a transformation if

$$[U, H] = 0$$

The observable associate with G is conserved if

$$[G,H]=0$$

Invariance, symmetry and conservation

$$[U,U_t]=0 \iff [U,H]=0 \iff [G,H]=0$$
 invariance \iff symmetry \iff conservation

In crystals, k is a godd quantum number

$$UH(\mathbf{k})U^{\dagger} = H(\mathcal{R}\mathbf{k})$$

- ullet U is a unitary operator
- Transformation: $\mathbf{k}' = \mathcal{R}\mathbf{k}$

$$H = v_F(\sigma_x k_x + \sigma_y k_y)$$

Mirror \mathcal{M}_x :

$$UH(k_x, k_y)U^{\dagger} = H(-k_x, k_y)$$

$$U = \sigma_y$$

$$H = v_F(\sigma_x k_x + \sigma_y k_y)$$

Mirror \mathcal{M}_y :

$$UH(k_x, k_y)U^{\dagger} = H(k_x, -k_y)$$

$$U = \sigma_x$$

$$H = v_F(\sigma_x k_x + \sigma_y k_y)$$

Inversion \mathcal{I} :

$$\mathcal{I}H(k_x, k_y)\mathcal{I}^{\dagger} = H(-k_x, -k_y)$$

$$\mathcal{I} = \sigma_z$$

$$H = v_F(\sigma_x k_x + \sigma_y k_y)$$

Time reversal:

$$\mathcal{T}H(k_x,k_y)\mathcal{T}^{\dagger}=H(-k_x,-k_y)$$

$$\mathcal{T} = U\mathcal{K}, \quad U = -i\sigma_y$$

$$H = v_F(\sigma_x k_x + \sigma_y k_y)$$

Particle-hole symmetry:

$$\mathcal{P}H(k_x, k_y)\mathcal{P}^{\dagger} = -H(-k_x, -k_y)$$

$$\mathcal{P} = U\mathcal{K}, \quad U = \sigma_x$$

Chiral symmetry:

$$\mathcal{C}H(k_x, k_y)\mathcal{C}^{\dagger} = -H(k_x, k_y)$$

Clearly, $\mathcal{C} = \mathcal{P}\mathcal{T}$

$$H = v_F(\sigma_x k_x + \sigma_y k_y)$$

Rotation:

$$\mathbf{k}' = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} k_x \\ k_y \end{pmatrix}$$

The unitary operator

$$U(\theta) = e^{-i\frac{\theta}{2}\sigma_3}$$

The Hamiltonian satisfies

$$U(\theta)H(\mathbf{k})U^{\dagger} = H(\mathbf{k}')$$

$$H = wk_x + v_F(\sigma_x k_x + \sigma_y k_y)$$

- Mirror \mathcal{M}_y
- Particle-hole symmetry
- Rotation C_{2x}
- $\mathcal{M}_x\mathcal{T}$

Outline

Transformation and symmetry

Axial vector

Iranslation

Reflection

Rotation

Space and time reversal

Combine operation

Point group

What is group

32 crystallographic point group

Group

Group

(G,*)

- Set: $\{g_1, g_2, \dots\}$
- ullet Operation *

Group

Group

(G,*)

- Set: $\{g_1, g_2, \dots\}$
- Operation *

Algebra

(G, *, +)

Group

Identity element

$$e*a = a*e = a$$

Associativity

$$(a*b)*c = a*(b*c)$$

• Inverse element For every element $a \in G$, there exists an inverse element $a^{-1} \in G$

$$a * a^{-1} = a^{-1} * a = e$$

Closure

$$\forall a,b{\in}G,,\quad a*b\in G$$

 $5 C_n$

- \bullet C_1
- \bullet C_2
- C₃
- \bullet C_4
- C₆

 $5 C_{nh}$

- C_{1h}
- C_{2h}
- C_{3h}
- C_{4h}
- C_{6h}

 $4 C_{nv}$

- C_{2v}
 C_{3v}
- C_{4v}
- C_{6v}

 $3 S_{2m}$

- S₂ S₄ S₆

 $4 D_n$

- D_2
- D_3
- D_4
- D₆

 $4 D_{nh}$

- D_{2h}
- D_{3h}
- D_{4h}
- D_{6h}

 $2 D_{nd}$

D_{2d}
 D_{3d}

5 Cubic point group

- T
- *T*_d
- T_h
- O
- \bullet O_h

Conclusion

- Transformation in system
- Symmetry and invariant